86,909 research outputs found

    A large-scale one-way quantum computer in an array of coupled cavities

    Full text link
    We propose an efficient method to realize a large-scale one-way quantum computer in a two-dimensional (2D) array of coupled cavities, based on coherent displacements of an arbitrary state of cavity fields in a closed phase space. Due to the nontrivial geometric phase shifts accumulating only between the qubits in nearest-neighbor cavities, a large-scale 2D cluster state can be created within a short time. We discuss the feasibility of our method for scale solid-state quantum computationComment: 5 pages, 3 figure

    Modelling the influence of personality and culture on affect and enjoyment in multimedia

    Get PDF
    Affect is evoked through an intricate relationship between the characteristics of stimuli, individuals, and systems of perception. While affect is widely researched, few studies consider the combination of multimedia system characteristics and human factors together. As such, this paper explores the influence of personality (Five-Factor Model) and cultural traits (Hofstede Model) on the intensity of multimedia-evoked positive and negative affects (emotions). A set of 144 video sequences (from 12 short movie clips) were evaluated by 114 participants from a cross-cultural population, producing 1232 ratings. On this data, three multilevel regression models are compared: a baseline model that only considers system factors; an extended model that includes personality and culture; and an optimistic model in which each participant is modelled. An analysis shows that personal and cultural traits represent 5.6% of the variance in positive affect and 13.6% of the variance in negative affect. In addition, the affect-enjoyment correlation varied across the clips. This suggests that personality and culture play a key role in predicting the intensity of negative affect and whether or not it is enjoyed, but a more sophisticated set of predictors is needed to model positive affect with the same efficacy

    Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies

    Full text link
    In this paper we present Monte-Carlo simulations of Lyman alpha absorption systems which originate in galactic haloes, galaxy discs and dark matter (DM) satellites around big central haloes. It is found that for strong Lyman alpha absorption lines galactic haloes and satellites can explain ~20% and 40% of the line number density of QSO absorption line key project respectively. If big galaxies indeed possess such large numbers of DM satellites and they possess gas, these satellites may play an important role for strong Lyman alpha lines. However the predicted number density of Lyman-limit systems by satellites is \~0.1 (per unit redshift), which is four times smaller than that by halo clouds. Including galactic haloes, satellites and HI discs of spirals, the predicted number density of strong lines can be as much as 60% of the HST result. The models can also predict all of the observed Lyman-limit systems. The average covering factor within 250 kpc/h is estimated to be ~0.36. And the effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the selection effects of selection criteria similar to the imaging and spectroscopic surveys. We simulate mock observations through known QSO lines-of-sight and find that selection effects can statistically tighten the dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in section

    Cusp Summations and Cusp Relations of Simple Quad Lenses

    Full text link
    We review five often used quad lens models, each of which has analytical solutions and can produce four images at most. Each lens model has two parameters, including one that describes the intensity of non-dimensional mass density, and the other one that describes the deviation from the circular lens. In our recent work, we have found that the cusp and the fold summations are not equal to 0, when a point source infinitely approaches a cusp or a fold from inner side of the caustic. Based on the magnification invariant theory, which states that the sum of signed magnifications of the total images of a given source is a constant, we calculate the cusp summations for the five lens models. We find that the cusp summations are always larger than 0 for source on the major cusps, while can be larger or smaller than 0 for source on the minor cusps. We also find that if these lenses tend to the circular lens, the major and minor cusp summations will have infinite values, and with positive and negative signs respectively. The cusp summations do not change significantly if the sources are slightly deviated from the cusps. In addition, through the magnification invariants, we also derive the analytical signed cusp relations on the axes for three lens models. We find that both on the major and the minor axes the larger the lenses deviated from the circular lens, the larger the signed cusp relations. The major cusp relations are usually larger than the absolute minor cusp relations, but for some lens models with very large deviation from circular lens, the minor cusp relations can be larger than the major cusp relations.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Superfluid shells for trapped fermions with mass and population imbalance

    Full text link
    We map out the phase diagram of strongly interacting fermions in a potential trap with mass and population imbalance between the two spin components. As a unique feature distinctively different from the equal-mass case, we show that the superfluid here forms a shell structure which is not simply connected in space. Different types of normal states occupy the trap regions inside and outside this superfluid shell. We calculate the atomic density profiles, which provide an experimental signature for the superfluid shell structure.Comment: 4 pages, 3 figure

    Crumpling wires in two dimensions

    Full text link
    An energy-minimal simulation is proposed to study the patterns and mechanical properties of elastically crumpled wires in two dimensions. We varied the bending rigidity and stretching modulus to measure the energy allocation, size-mass exponent, and the stiffness exponent. The mass exponent is shown to be universal at value DM=1.33D_{M}=1.33. We also found that the stiffness exponent α=0.25\alpha =-0.25 is universal, but varies with the plasticity parameters ss and θp\theta_{p}. These numerical findings agree excellently with the experimental results

    First Lattice Study of the NN-P11(1440)P_{11}(1440) Transition Form Factors

    Full text link
    Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8 offer new opportunities to understand in detail how nucleon resonance (NN^*) properties emerge from the nonperturbative aspects of QCD. Preliminary data from CLAS collaboration, which cover a large range of photon virtuality Q2Q^2 show interesting behavior with respect to Q2Q^2 dependence: in the region Q21.5GeV2Q^2 \le 1.5 {GeV}^2, both the transverse amplitude, A1/2(Q2)A_{1/2}(Q^2), and the longitudinal amplitude, S1/2(Q2)S_{1/2}(Q^2), decrease rapidly. In this work, we attempt to use first-principles lattice QCD (for the first time) to provide a model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum
    corecore